化学工程作为一种典型的工程学科,其特点是半理论半实验。由于一些现象过于复杂,涉及机械、材料、物理、化学、热力学、动力学和传递,多种因素关联偶合在一起,无法通过纯理论逻辑推导得到某些现象的原因或结论,需要在实验室环境下将各种因素分离独立研究(彻底的研究方法),或者综合在一起、只研究主要因素对结果的影响。也就是说,化学工程的大部分理论知识来自于实验室研究。
举一个简单例子,例如一组新的二元体系,在没有汽液平衡实验数据的前提下,有哪种模型敢说它的预测精度在5%内?虽然化工文献和数据库中已经有了上百万组的二元汽液平衡实验数据,化工热力学家研究了近50年的汽液平衡预测模型,但一旦遇到关键应用,还是得去实验室做实验得到实验数据。
由于化工现象的复杂性,有些现象在工业装置上表现出与实验室实验装置上不同的特性甚至在实验室无法观察到的现象,即所谓的“放大效应”,其本质还是对某些因素考察不清导致没有正确预测。此时,我们可以从工业装置得到反馈从而扩展化学工程的知识。另外,从工业装置运行中,还可以得到大量的操作、维护、安全方面的、超出实验室研究范围的经验性知识。
虽然化工行业在中国不是什么好形象,在大学也不是什么好专业,但是其学科知识结构、研究方法都比较复杂,在欧美化学工程在工程学科中是一个收入靠前的专业。
将经验转化为数据,将数据转化为知识,将知识融入到自动化系统中,这就是知识自动化,这才是智能制造的核心。
可见,一个化工装置的工艺机理知识基本已经融入到最初的设计中和运行的自动化控制中,已经80%以上实现了知识的自动化;而装置运营知识,主要涉及人员管理、资产设备管理、操作、维护、供应链的知识还是存在于各种SOP中,和作为经验存在于人脑中,这方面离知识自动化还有很在大的距离。